[1]Cai, Yang, Xinzi Liu, Yu Sun,Xiaojun Fan, and Jiao Wang. 2024. Unique Coolant Supply Passage Arrangements to Induce Large-Scale Vortex within Turbine Blade Interior Leading Edge ChambersEnergies17, no. 14: 3404. https://doi.org/10.3390/en17143404
                  
                   [2]Xiaojun Fan; Numerical research of a new vortex double wall cooling configuration for gas turbine blade leading edge[J]. International Journal of Heat and Mass Transfer, 2022. (SCI)
                  [3]Xiaojun Fan; Xue yuan; Numerical investigation of nozzle geometry influence on the vortex cooling in an actual gas turbine blade leading edge cooling system[J]. Heat and Mass Transfer, 2021. (SCI)
                  [4]Fan Xiaojun, Chuangxin He, Lian Gan, Liang Li, Changhe Du. Experimental study of swirling flow characteristicsin a semi cylinder vortex cooling configuration.[J].Experimental Thermal and Fluid Science, 2020.
                  
                   [5]Fan Xiaojun, Li Liang, Wang Jiefeng, Wu Fan. Heat transfer enhancement for gas turbine blade leading edge cooling using curved double-wall/vortex cooling with various disturbing objects[C].ASME PaperGT2019-90211, 2019.
                  
                  
                   [6]
                   Fan Xiaojun, Li Liang, Zou Jiasheng, Zhou yuanyuan. Cooling methods for gas turbine blade leading edge: Comparative study on impingement cooling, vortex cooling and double vortex cooling[J].International Communications in Heat and Mass Transfer, 2019, 100: 133-145.
                  
                   [7]Fan Xiaojun, Li Liang, Zou Jiasheng, Wang Jiefeng, Wu Fan. Local heat transfer of vortex cooling with multiple tangential nozzles in a gas turbine blade leading edge cooling passage[J].International Journal of Heat and Mass Transfer, 2018, 126: 377-389.
                  [8]Fan Xiaojun, Du Changhe, Li Liang, Li Sen. Numerical simulation on effects of film hole geometry and mass flow on vortex cooling behavior for gas turbine blade leading edge[J].Applied Thermal Engineering, 2017, 112: 472-483.
                  [9]范小军,杜长河,李亮,李森.气膜孔几何位置对旋流冷却流动与传热特性的影响[J].西安交通大学学报, 2016, 50(7): 32-38.
                  
                   [10]
                   范小军,李亮,李森,张翔.平板和静叶表面气流-水膜耦合流动特性的数值研究[J].西安交通大学学报, 2016, 50(11):7-13.
                  
                   [11]范小军,杜长河,李亮,邹佳生. 4种冷却结构对叶片前缘流动换热影响的比较研究[J].西安交通大学学报, 2017, 51(7):37-43.
                  
                   [12]范小军,邹佳生,周源远,李亮.喷嘴数目和温比对旋流冷却流动和传热特性影响的研究[J].西安交通大学学报, 2018, 52(3): 19-24.
                  [13]范小军,杜长河,周源远,李亮,丰镇平.复合冲击和复合旋流冷却特性的对比研究[J].工程热物理学报, 2018, 39(12): 2627-2633.